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Abstract. We provide a simple approach to generating all 2n ·n! signed
permutations of [n] = {1, 2, . . . , n}. Our solution generalizes the most
famous ordering of permutations: plain changes (Steinhaus-Johnson-
Trotter algorithm). In plain changes, the n! permutations of [n] are
ordered so that successive permutations differ by swapping a pair of
adjacent symbols, and the order is often visualized as a weaving pattern
on n ropes. Here we model a signed permutation as n ribbons with two
distinct sides, and each successive configuration is created by twisting
(i.e., swapping and turning over) two neighboring ribbons or a single
ribbon. By greedily prioritizing 2-twists of large symbols then 1-twists
of large symbols, we create a signed version of plain change’s memorable
zig-zag pattern. We also provide a loopless implementation (i.e., worst-
case O(1)-time per object) by enhancing the well-known mixed-radix
Gray code algorithm.

Keywords: plain changes · signed permutations · signed
permutohedron · greedy Gray codes · combinatorial generation ·
loopless algorithms

1 Generating Permutations and Signed Permutations

The generation of permutations is a classic problem that dates back to the dawn
of computer science (and several hundred years earlier). The goal is to create all
n! permutations of [n] = {1, 2, . . . , n} as efficiently as possible. A wide variety of
approaches have been considered, some of which can be conceptualized using a
specific physical model of the permutation. Let’s consider three such examples.

Zaks’ algorithm [38] can be conceptualized using a stack of n pancakes of
varying sizes. Successive permutations are created by flipping some pancakes at
the top of the stack, which is equivalent to a prefix-reversal in the permutation.
For example, if represents 1234, then flipping the top three pancakes gives

or
←→
1234 = 3214. Table 1 shows the full order for n = 4. Zaks designed his

‘new’ order to have an efficient array-based implementation. Unknown to Zaks,
Klügel had discovered this pancake order by 1796 [14]; see [1] for further details.

Corbett’s algorithm [3] can be conceptualized using n marbles on a ramp.
Successive permutations are created by moving a marble to the top of the ramp,
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which is equivalent to a prefix-rotation in the permutation. For example, if

represents 1234, then moving the fourth marble gives or
←−−
1234 = 4123.

The algorithms by Zaks and Corbett are well-known, and have their own spe-
cific applications. For example, in interconnection networks [4], the algorithms
give Hamilton cycles in the pancake network and rotator network, respectively.

Plain changes can be conceptualized using n parallel ropes. Successive permu-
tations are obtained by crossing one rope over a neighboring rope as in weaving.
This is equivalent to a swap (or adjacent-transposition) in the permutation. For
example, if represents 1234, then swapping the middle pair gives or
1
←→
234 = 1324. Plain changes dates to bell-ringers in the 1600 s [5]. Figure 3 shows

the order for n = 4 and its zig-zag pattern. It is also known as the Steinhaus-
Johnson-Trotter algorithm [16,31,34] due to rediscoveries circa 1960.

Many other notable approaches to permutation generation exist, with surveys
by Sedgewick [30], Savage [27], and Mütze [22], and frameworks by Knuth [17]
and Ganapathi and Chowdhury [8]. While some methods have specific advan-
tages [15] or require less additional memory when implemented [19], there is
little doubt that plain changes is the solution to permutation generation.

A signed permutation of [n] is a permutation of [n] in which every symbol
is given a ± sign. We let Sn and S±

n be the sets of all permutations and signed
permutations of [n], respectively. Note that |Sn| = n! and |S±

n | = 2n · n!. For
example, 231 ∈ S3 has eight different signings, including +2−3−1 ∈ S±

3 . For con-
venience, we also use bold or overlines for negatives, with 231 and 231 denoting
+2−3−1. Signed permutations arise in many contexts including genomics [7].

The efficient generation of signed permutations has been considered. Suzuki,
Sawada, and Kaneko [33] treat signed permutations as stacks of n burnt pancakes
and provide a signed version of Zaks’ algorithm. Korsh, LaFollette, and Lipschutz
[18] provide a Gray code that swaps two symbols (and preserves their signs) or
changes the rightmost symbol’s sign. Both approaches offer improvements over
standard lexicographic orders (i.e., alphabetic orders) but neither is considered
to be the solution for signed permutations. We define a signed plain change order
to be any extension of plain changes to signed permutations.

Physical Model of Signed Permutations: Two-Sided Ribbons. A two-
sided ribbon is glossy on one side and matte on the other1, and we model a signed
permutation using n two-sided ribbons in parallel. We modify the ribbons via
twists. More specifically, a k-twist turns over k neighboring ribbons and reverses
their order, as visualized in Fig. 1 for k = 1, 2. A twist performs a complementing
substring reversal, or simply a reversal [11], on the signed permutation.

Our goal is to create a twist Gray code for signed permutations. This means
that each successive entry of S±

n is created by applying a single twist. Equiva-
lently, a sequence of 2nn!−1 twists generates each entry of S±

n in turn. It should
be obvious that 1-twists are insufficient for this task on their own, as they do not
modify the underlying permutation. Similarly, 2-twists are insufficient on their

1 Manufacturers refer to this type of ribbon as single face as only one side is polished.
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1 1
2 -2
3 3
4 4

(a) The 1-twist changes 1 2 3 4 into 1 2 3 4.

1 1
-2 -3
3 2
-4 4

(b) The 2-twist changes 1 2 3 4 into 1 3 2 4.

Fig. 1. Two-sided ribbons with distinct positive (i.e., glossy) and negative (i.e., matte)
sides running in parallel. A k-twist reverses the order of k neighboring ribbons and
turns each of them over, as shown for (a) k = 1 and (b) k = 2.

own, as they do not modify the number of positive symbols modulo two. How-
ever, we will show that 2-twists and 1-twists are sufficient when used together.
Our solution is a signed plain change order that we name twisted plain changes.

Application: Train-Based Traveling Salesman Problems. Exhaustive
generation is central to many applications, including testing and exact algo-
rithms. Gray code algorithms can also improve the latter. For example, a travel-
ing salesman problem on n cities can be solved by generating all n! permutations
of [n], with each member of Sn providing a possible route through the cities
(e.g., p1p2 · · · pn ∈ Sn represents the route p1 → p2 → · · · → pn). Plain changes
is advantageous because successive routes differ in at most three segments (e.g.,
swapping pipi+1 to pi+1pi replaces segment pi → pi+1 with pi → pi+2) [15].
Thus, the distance of each successive route can be updated in constant time.

Now consider a TSP-variant involving trains, where each of the n stations
can be entered/exited in one of two orientations (e.g., the train may travel along
the station’s eastbound or westbound track). Note that the time taken to travel
from one station to another depends on these orientations. As a result, there are
2n ·n! possible routes and they correspond to the members of S±

n . Our twist Gray
code algorithm generates successive routes that differ in at most three segments.

1.1 Outline

Section 2 provides background on combinatorial generation. Section 3 defines our
twist Gray code using a simple (but inefficient) greedy algorithm. Section 4
discusses ruler sequences and their applications. Section 5 uses a signed ruler
sequence to generate our Gray code in worst-case O(1)-time per signed permu-
tation. A Python implementation of our final algorithm appears in the appendix.
The proofs of Lemma 1–3 are left as exercises to the reader due to page limits.

2 Combinatorial Generation

As Ruskey explains in Combinatorial Generation [26], humans have been writing
exhaustive lists of various kinds for thousands of years, and more recently, pro-
gramming computers to do so. Here we review basic concepts and terminology,
then we discuss two foundational results and modern reinterpretations of them.



Generating Signed Permutations by Twisting Two-Sided Ribbons 117

2.1 Gray Codes and Loopless Algorithms

If successive objects in an order differ in a constant amount (by some metric),
then it is a Gray code. If an algorithm generates each object in amortized or
worst-case O(1)-time, then it is constant amortized time (CAT) or loopless [6].
To understand these terms, note that a well-written generation algorithm shares
one object with an application. It modifies the object and announces that the
‘next’ object can be visited, without using linear-time to create a new object.
Loopless algorithms make constant-time modifications using a Gray code. For
example, Zaks’ order can be generated in CAT as its prefix-reversals have con-
stant average length (see Ord-Smith’s earlier EconoPerm program [24]), but a
loopless algorithm is not possible as a length n prefix-reversal takes Θ(n)-time2.

2.2 Binary Reflected Gray Code and Plain Changes

Plain change’s stature in combinatorial generation is rivaled only by the binary
reflected Gray code3. The BRGC orders n-bit binary strings by bit-flips, meaning
successive strings differ in one bit. It is typically defined recursively as

brgc(n) = 0 · brgc(n−1), 1 · reflect(brgc(n−1)) with brgc(1) = 0, 1 (1)

where reflect denotes list reflection (i.e., last string goes first). For example,

brgc(2) = 0 · brgc(1), 1 · reflect(brgc(1)) = 0 · (0, 1), 1 · (1, 0) = 00, 01, 11, 10

where overlines and underlines have been added for flips from 0 to 1 and 1 to 0,
respectively. The order for n = 4 is visualized in Fig. 2 using two-sided ribbons,
where each bit-flip is a 1-twist of the corresponding ribbon.

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

Fig. 2. Binary reflected Gray code using indistinct two-sided ribbons for n = 4.

Plain changes recursively zigs and zags n through permutations of [n−1].
In (2), zig and zag give length n−1 lists that repeatedly swap n to the left or
right.

plain(n) =zig(p1 · n), zag(n · p2), . . . , zig(p(n−1)!−1 · n), zag(n · p(n−1)!) (2)
with plain(n − 1) = p1, p2, . . . , p(n−1)!

2 If the permutation is stored in a BLL instead of an array, then loopless is possible [35].
3 The eponymous Gray code by Gray [10] also demonstrates Stigler’s law [32]: [9,13].
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Formula (2) assumes (n−1)! is even, so we use base case plain(2) =
←−
12, 21. Here

the arrow denotes a larger value swapping left past its smaller neighbor. Thus,

plain(3) = zig(12 · 3), zag(3 · 21) = 1
←−
23,

←−
132, 3

←−
12,

−→
321, 2

−→
31, 213,

Figure 3 visualizes plain(4) with distinct one-sided ribbons4. Note how 4 zigzags.

1 1 1 4 4 1 1 1 3 3 3 4 4 3 3 3 2 2 2 4 4 2 2 2
2 2 4 1 1 4 3 3 1 1 4 3 3 4 2 2 3 3 4 2 2 4 1 1
3 4 2 2 3 3 4 2 2 4 1 1 2 2 4 1 1 4 3 3 1 1 4 3
4 3 3 3 2 2 2 4 4 2 2 2 1 1 1 4 4 1 1 1 3 3 3 4

Fig. 3. Plain changes plain(n) using distinct one-sided ribbons for n = 4.

2.3 The Greedy Gray Code Algorithm

Historically, Gray codes have been created using recursion. In contrast, the greedy
Gray code algorithm [36] attempts to create a Gray code one object at time. A list
greedy(s, 〈o1, o2, . . . , ok〉) is initialized with a start object s, then it is repeatedly
extended as follows: If t is the last object in the list, then add oi(t) to the end of
the list, where i is the minimum index such that oi(t) is valid and not in the list.
This continues until none of the operations o1, o2, . . . , ok produce a new object.

The binary reflected Gray code is a greedy Gray code: start at s = 0n and
flip the rightmost possible bit [36]. That is, brgc(n) = greedy(0n, 〈f1, f2, . . . , fn〉)
where fi flips bi in bnbn−1 · · · b1 ∈ Bn. For example, the order for n = 4 begins

brgc(4) = 0000, 0001, 0011, 0010, . . . . (3)

To continue (3) we consider applying the bit-flips to the current last object
t = 0010. We can’t flip its right bit since f1(t) = f1(0010) = 0010 = 0011 is
already in the list. Similarly, f2(t) = f2(0010) = 0010 = 0000 is also in the list.
But f3(t) = f3(0010) = 0010 = 0110 is not in the list, so it is the next string.

Plain changes is also greedy: start at s = 12 · · · n and swap the largest possible
value left or right [36]. That is, plain(n) = greedy(12 · · · n, 〈←−sn,−→sn, . . . ,←−s2 ,−→s2〉)5
where ←−sv and −→sv swap value v to the left and right, respectively, when applied
to any member of Sn. For example, the order for n = 4 begins

plain(4) = 12
←−
34, 1

←−
243,

←−
1423, 41

←−
23,

−→
4132, 1

−→
432, 13

−→
42, 1324, . . . . (4)

We can’t apply ←−s4 to t = 1324 since ←−s4(1324) = 13
←−
24 = 1342 is already in the list.

Nor can we apply the next highest-priority operation −→s4 as −→s4(1324) is invalid.
But ←−s3(t) =

←−
1324 = 3124 is not in the list, so it is the next permutation. Plain

change’s greedy formula also holds when the swaps are replaced by jumps (i.e.,
values can only be swapped over smaller values) and with ←−s1 and −→s1 omitted [12].
4 Physically, a ribbon moves above or below its neighbor, but that is not relevant here.
5 ←−s1 and −→s1 are omitted as they equal other swaps. In fact, the swaps are all jumps [12].
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Reflecting BRGC and Plain Changes. Interestingly, if either of the previous
two greedy algorithms is started from their final object, then the entire order is
reflected. For example, if s = 1000 is chosen in Fig. 2, or s = 2134 is chosen in
Fig. 3, then the greedy algorithms generate the objects from right-to-left. This
is in part explained by their palindromic change sequences (see Sect. 4).

Lemma 1. greedy(10n−1, 〈f1, f2, . . . , fn〉) = reflect(brgc(n)).

Lemma 2. greedy(2134 · · · n, 〈←−sn,−→sn,←−−sn−1,
−−→sn−1, . . . ,

←−s2 ,−→s2 , 〉)
= reflect(plain(n)).

3 A Signed Plain Change Order: Twisted Plain Changes

Now we present a greedy solution to generating a signed plain change order.

Definition 1. Twisted plain changes twisted(n) is the signed permutation order
visited by Algorithm 1. It starts with s = +1+2 · · · +n ∈ S±

n and prioritizes 2-
twists of the largest possible value then 1-twists of the largest possible value. That
is, greedy(s, 〈←−tn,

−→
tn,

←−
tn−1,

−→
tn−1, . . . ,

←−
t2,

−→
t2, tn, . . . , t2, t1〉), where ←−

tv and −→
tv

2-twist value v left or right, and tv 1-twists value v (i.e., v’s sign is flipped).

Algorithm 1. Greedy algorithm for generating twisted plain changes twisted(n).
1: procedure Twisted(n) � Signed permutations are visited in twisted(n) order
2: T ← ←−

tn,
−→
tn,

←−
tn−1,

−→
tn−1, . . . ,

←−
t2,

−→
t2, tn, . . . , t2, t1 � List 2-twists then 1-twists

3: π ← +1 +2 · · · +n � Starting signed permutation s = π ∈ S±
n

4: visit(π) � Visit π for the first and only time
5: S = {π} � Add π to the visited set
6: i ← 1 � 1-based index into T ; T [1] =

←−
tn will 2-twist n left

7: while i ≤ 3n − 2 do � Index i iterates through the 3n − 2 twists in T
8: π′ ← T [i](π) � Apply the ith highest priority twist to create π′

9: if π′ /∈ S then � Check if π′ is a new signed permutation
10: π ← π′ � Update the current signed permutation π
11: visit(π) � Visit π for the first and only time
12: S = S ∪ {π} � Add π to the visited set
13: i ← 1 � Reset the 1-based index into T
14: else
15: i ← i + 1 � If π′ ∈ S, then consider the next twist

···
1 1 1 �4 �4 1 1 1 3 3 3 �4 �4 3 3 3 �2 �2 �2 �4 �4 �2 �2 �2 �2
2 2 4 �1 �1 4 �3 �3 �1 �1 4 �3 �3 4 2 2 �3 �3 4 2 2 4 �1 �1 �1
3 �4 �2 �2 3 3 �4 �2 �2 �4 1 1 �2 �2 �4 1 1 �4 3 3 1 1 �4 3 3
4 �3 �3 �3 2 2 2 4 4 2 2 2 �1 �1 �1 4 4 �1 �1 �1 �3 �3 �3 4 �4

Fig. 4. Twisted plain changes twisted(n) for n = 4 up to its 25th entry.
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For example, our twist Gray code for n = 4 begins as follows

twisted(4) = 12
←−
34, 1

←−
243,

←−
1423,41

←−
23,

−→
4132, 1

−→
432, 13

−→
42, 1324, . . . . (5)

with bold for negatives and arrows for twists. To continue the order note that←−
t4(t) = ←−

t4(1324) = 13
←−
24 = 1342 is already in the list and −→

t4(t) is invalid. But←−
t3(t) = ←−

t3(1324) =
←−
1324 = 3124 is new, so it is the next signed permutation.

Figure 4 shows the start of twisted(n) for n = 4. Note that the first 24 entries
are obtained by 2-twists. The result is a familiar zig-zag pattern, but with every
ribbon turning over during each pass. The 25th entry is obtained by a 1-twist.

3.1 2-Twisted Permutohedron and Signed Permutohedra

At this point it is helpful to compare the start of plain changes and twisted plain
changes. The permutohedron of order n is a graph whose vertices are permuta-
tions Sn and whose edges join two permutations that differ by a swap. Plain
changes traces a Hamilton path in this graph, as illustrated in Fig. 5a.

Now consider signing each vertex p1p2 · · · pn in the permutohedron as follows:

pj = i is positive if and only if i ≡ j mod 2. (6)

In particular, the permutation 12 · · · n is signed as +1+2 · · · +n due to the fact
that odd values are in odd positions, and even values are in even positions. One
way of interpreting (6) is that swapping a symbol changes its sign. Thus, after
this signing, the edges in the resulting graph model 2-twists instead of swaps.
For this reason, we refer to the graph as a 2-twisted permutohedron of order n.

Since twisted plain changes prioritizes 2-twists before 1-twists, the reader
should be able to conclude that twisted(n) starts by creating a Hamilton path
in the 2-twisted permutohedron. This is illustrated in Fig. 5b.

Fig. 5. The (a) permutohedron and (b) 2-twisted permutohedron for n = 4.
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In general, there are 2n signed permutohedron of order n. Each signed permu-
tohedron contains n! vertices, including a single signing of the vertex 12 · · · n, and
edges for every possible 2-flip. In particular, the 2-twisted permutohedron is the
signed permutohedron with vertex +1+2 · · · +n (i.e., 12 · · · n is fully positive).

3.2 Global Structure

Our greedy approach can be verified to work for small n. To prove that it works
for all n we need to deduce the global structure of the order that is created.
We’ll see that the order navigates through successive signed permutohedron.

Theorem 1. Algorithm 1 visits a twist Gray code of signed permutations.
That is, twisted(n) = greedy(s, 〈←−tn,

−→
tn,

←−
tn−1,

−→
tn−1, . . . ,

←−
t2,

−→
t2, tn, . . . , t2, t1〉)

orders S±
n .

Proof. Since 2-twists are prioritized before 1-twists, the algorithm proceeds in
the same manner as plain changes, except for the signs of the visited objects.
As a result, it generates sequences of n! signed permutations using 2-twists until
a single 1-twist is required. One caveat is that the first signed permutation in
a sequence alternates between having the underlying permutation of 1234 · · · n
or 2134 · · · n. This is due to the fact that plain changes starts at 1234 · · · n and
ends at 2134 · · · n and swaps 12 to 21 one time. As a result, 12 will be inverted
while traversing every second sequence of length n!, and these traversals will be
done in reflected plain changes order by Lemma 2. More specifically, the order
generated by the algorithm appears in Fig. 6, with an example in Fig. 7. �	

Fig. 6. The global structure of twisted plain changes. Each row greedily applies 2-twists
to the largest possible symbol, thus following plain changes. At the end of a row, no
2-twist can be applied, and the down arrows greedily 1-twist the largest possible sym-
bol. The rows alternate left-to-right and right-to-left (i.e., in boustrophedon order) by
Lemma 2 The leftmost column contains 12 · · · n signed according to successive strings
in the binary reflected Gray code. The overall order is cyclic as a 1-twist on value 1
transforms the last entry into the first.
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Fig. 7. Our twisted(4) order begins by traversing the above signed permutohedron,
starting from the 2-twisted permutohedron on the left. Straight lines are the edges of a
signed permutohedron (i.e., every possible 2-twist). Curved edges are 1-twists between
the vertices shown, and they connect two signed permutohedron. Highlighted edges are
used by the greedy algorithm: green subpaths start at a signed 1234 · · · n vertex and
proceed in plain changes; red subpaths start at a signed 2134 · · · n vertex and proceed
in reflected plain changes.

Theorem 1’s proof can be used toward a CAT implementation of twisted(n).
We’ll instead develop a loopless implementation of twisted(n) in Sects. 4–5.

4 Ruler Sequences

Here we consider integer sequences called ruler sequences. The sequences are
named after the tick marks on rulers and tape measures whose heights follow
the decimal ruler sequence ruler(10, 10, . . . , 10). They are central to Algorithm 2
in Sect. 5, and relate twisted(n) to other Gray codes and lexicographic orders.

4.1 Ruler Sequences, Mixed-Radix Words, and Lexicographic
Orders

The ruler sequence with bases bn, bn−1, . . . , b1 can be inductively defined as fol-
lows, where commas join sequences, and exponentiation denotes repetition.

ruler(b1) = 1b1−1 = 1, 1, . . . , 1 (i.e., b1 − 1 copies) (7)

ruler(bn, bn−1, . . . , b1) = (s, n)bn−1, s where s = ruler(bn−1, bn−2, . . . , b1) (8)

Hence, ruler(5, 3) = 1,1,2,1,1,2,1,1,2,1,1,2,1,1 = (s, 2)4, s since s = ruler(3) = 1, 1.
The length of the ruler sequence is |ruler(bn, bn−1, . . . , b1)| = (

∏n
i=1 bi) − 1.

Bases can also be used to define the set of mixed-radix words Wbn,bn−1,...,b1 ,
where wn · · · w2w1 is in the set if its digits satisfy 0 ≤ wi < bi for 1 ≤ i ≤ n. The
number of these words is |Wbn,bn−1,...,b1 | =

∏n
i=1 bi = |ruler(bn, bn−1, . . . , b1)|+1.

When mixed-radix words are written in lexicographic order, the ruler
sequence is its change sequence. Each ruler entry is the number of digits that
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“roll over” to create the next word. In particular, the binary ruler sequence
ruler(2, 2, . . . , 2) (Oeis A001511 [23]) gives the suffix lengths of the form 011 · · · 1
that change to 100 · · · 0 when counting in binary. This is shown below for n = 3.

lex(B3) = 000, 001, 010, 011, 100, 101, 110, 111 since ruler(2, 2, 2) = 1, 2, 1, 3, 1, 2, 1

The upstairs ruler sequence ruler(1, 2, . . . , n) (Oeis A235748) arises when listing
upstairs words W1,2,...,n, and the downstairs ruler sequence ruler(n, n−1, . . . , 1)
(Oeis A001511) arise when listing downstairs words Wn,n−1,...,1. The start of
these factorial patterns are below for n = 4 with full signed versions in Table 1.

lex(W1,2,3,4) = 1111,1112,1113,1121,1122,1123,1211,... as ruler(1,2,3,4) = 1,1,2,1,1,3,...

lex(W4,3,2,1) = 1111,1121,1211,1221,1311,1321,2111,... as ruler(4,3,2,1) = 2,3,2,3,2,4,...

Note that the unary bases bn = 1 (which never changes) and b1 = 1 (which
always rolls over to itself) are often omitted from these patterns.

Ruler sequences provide change sequences for various Gray codes, including
some from Sect. 1. The downstairs sequence gives the flip lengths in Zaks’ order
as seen in Table 1. Corbett’s order uses the upstairs sequence but subtly [36].
Other change sequences are more fully understood as signed ruler sequences.

4.2 Signed Ruler Sequences and (Reflected) Gray Codes

We define the signed ruler sequence ruler± as ruler with some entries negated.
The overlines complement the sign of each entry, and the R reverses a sequence.

ruler ± (b1) = 1b1−1 = 1, 1, . . . , 1 (i.e., b1 − 1 copies) (9)

ruler ± (bn,bn−1, . . . ,b1) =

{
(s, n, sR, n)bn/2, s if bn is odd
(s, n, sR, n)(bn−1)/2, s, n, s if bn is even

(10)

where s = ruler±(bn−1, bn−2, . . . , b1). Note that the subsequence s is repeated bn
times in (10) just as in (8), but every second subsequence is complemented6. For
example, ruler± (3) = 1, 1 so ruler± (4, 3) = 1, 1, 2,−1,−1, 2, 1, 1, 2,−1,−1. The
specific sequences (and associated orders) discussed below are shown in Table 1.

Signed ruler sequences govern reflected mixed-radix Gray codes, which gener-
alize (1) to non-binary bases b = bn, bn−1, . . . , b1 by reflecting every 2nd sublist,

mix(b) =

⎧
⎪⎨

⎪⎩

0, 1, . . . , b1−1 if n = 1
0 · mix(b′), 1 · reflect(b′), . . . , (bn−1) · mix(b′) odd n > 1
0 · mix(b′), 1 · reflect(b′), . . . , (bn−1) · reflect(mix(b′)) even n > 1

where b′ = bn−1, bn−2, . . . , b1. The entries of ruler ± (b) specify how to change
wnwn−1 · · · w1 ∈ Wb into the next word: increment wj for +j; decrement wj

for −j. The orders are also greedy: increment or decrement the rightmost digit.

6 Unsigned ruler sequences are palindromes, so R’s can be added to (8) to mirror (10).
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Table 1. Ruler sequences provide the change sequences of reflected Gray codes of
mixed-radix words, and (greedy) Gray codes of various other objects. The left columns
show that the unsigned downstairs ruler sequence ruler(n, n−1, . . . , 1) is the change
sequence for the up-words W4,3,2,1, and the prefix-reversal lengths (i.e., flip lengths)
in Zaks’ Gray code. The change sequences of the binary reflected Gray code and plain
changes are usually given as unsigned ruler sequences. However, signed versions provide
more information. The middle-left columns show that the signed binary ruler sequence
ruler ± (2, 2, . . . , 2) is the change sequence for brgc(n), with the sign providing the
direction of the flip: +j for bj = 0 = 1 and −j for bj = 1 = 0. Similarly, the middle-right
columns show that the signed upstairs ruler sequence ruler± (1, 2, . . . , n) is the change
sequence for plain(n), with the sign providing the direction of the swap: +j for swapping
x left and −j for swapping x right where x = n−j+1. Our twisted plain change Gray
code twisted(n) uses a signed factorial ruler sequence ruler±(n, n−1, . . . , 2, 1, 2, 2, . . . , 2)
(with the unary 1 omitted). Sequence entries from the factorial and binary portions
give 2-twists and 1-twists, respectively. In particular, the last row in the right columns
is the 1-twist in Fig. 3.

down ruler Zaks ruler± BRGC up ruler± plain up± ruler± twisted

words 4321 p4p3p2p1 2222 b4b3b2b1 words 1234 changes words 22221234 plain

0000 2
←→
1234 +1 0000 000 +1 12

←−
34 0000000 +1 12

←−
34

0010 3
←→
2134 +2 0001 001 +1 1

←−
243 0000001 +1 1

←−
243

0110 2
←→
3124 −1 0011 002 +1

←−
1423 0000002 +1

←−
1423

0100 3
←→
1324 +3 0010 003 +2 41

←−
23 0000003 +2 41

←−
23

0200 2
←→
2314 +1 0110 013 −1

−→
4132 0000013 −1

−→
4132

0210 4
←−→
3214 −2 0111 012 −1 1

−→
432 0000012 −1 1

−→
432

1210 2
←→
4123 −1 0101 011 −1 13

−→
42 0000011 −1 13

−→
42

1200 3
←→
1423 +4 0100 010 +2

←−
1324 0000010 +2

←−
1324

1100 2
←→
2413 +1 1100 020 +1 31

←−
24 0000020 +1 31

←−
24

1110 3
←→
4213 +2 1101 021 +1 3

←−
142 0000021 +1 3

←−
142

1010 2
←→
1243 −1 1110 022 +1

←−
3412 0000022 +1

←−
3412

1000 4
←−→
2143 −3 1110 023 +3 43

←−
12 0000023 +3 43

←−
12

2000 2
←→
3412 +1 1010 123 −1

−→
4321 0000123 −1

−→
4321

2010 3
←→
4312 −2 1011 122 −1 3

−→
421 0000122 −1 3

−→
421

2110 2
←→
1342 −1 1001 121 −1 32

−→
41 0000121 −1 32

−→
41

2100 3
←→
3142 120 −2

−→
3214 0000120 −2

−→
3214

2200 2
←→
4132 110 +1 23

←−
14 0000110 +1 23

←−
14

2210 4
←−→
1432 111 +1 2

←−
341 0000111 +1 2

←−
341

3210 2
←→
2341 112 +1

←−
2431 0000112 +1

←−
2431

3200 3
←→
3241 113 −2 42

−→
31 0000113 −2 42

−→
31

3100 2
←→
4231 103 −1

−→
4213 0000103 −1

−→
4213

3110 3
←→
2431 102 −1 2

−→
413 0000102 −1 2

−→
413

3010 2
←→
3421 101 −1 21

−→
43 0000101 −1 21

−→
43

3000 4321 100 2134 0000100 +5 2134

0001100 · · · 2134
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The binary reflected Gray code brgc(n) is the special case where the signed
binary sequence ruler ± (2, 2, . . . , 2) (Oeis A164677) gives bit increments and
decrements. More interestingly, plain(n) follows the signed upstairs sequence
ruler ± (1, 2, . . . , n): +j swaps value n−j+1 left; −j swaps value n−j+1 right7.

A signed basis b contains 1, 2, . . . , n plus n copies of 2. Note that |ruler±(b)| =
2nn!−1 = |S±

n |−1. The twisted basis concatenates the signed binary and signed
upstairs bases to give the twisted ruler sequence ruler ± (2, 2, . . . , 2, 1, 2, . . . , n).

Lemma 3. A change sequence for twisted(n) is ruler ± (2, 2, . . . , 2, 1, 2, . . . , n):
+j and −j respectively 2-twist value n−j+1 to the left and right for 1 ≤ |j| ≤ n;
+j and −j respectively 1-twist (flip) value n−j+1 down and up for n < |j| ≤ 2n.

Now we can looplessly generate twisted plain changes twisted(n) by looplessly
generating the twisted ruler sequence ruler±(2,2, . . . ,2,1,2, . . . ,n) and its changes.

5 Loopless Generation of Gray Codes via Ruler
Sequences

The greedy algorithm for twisted(n) in Sect. 2.3 is simple but inefficient. It
requires exponential space, as all previously created objects must be remem-
bered. Fortunately, greedy Gray codes can often be generated without remem-
bering previous objects [21,28,29]. The loopless history-free implementation that
we provide here uses a signed ruler sequence to generate the changes. Loopless
algorithms for non-greedy Gray codes also exist using ruler sequence changes
[8,15].

Algorithm 2 has procedures for generating Gray codes whose changes follow
a ruler sequence with any bases b. The start object is s and the change functions
are in fns. The ruler sequence is generated one entry at a time, and the current
object is updated and visited accordingly. More specifically, if j is the next entry,
then fns[j] is applied to s to create the next object. The pseudocode is adapted
from Knuth’s loopless reflected mixed-radix Gray code Algorithm M [17].

Algorithm 2 can looplessly generate various Gray codes in this paper. As a
simple example, Zaks’ pancake order uses RulerGrayCode with b = 2, 3, . . . , n,
s = 12 · · · n, and fns = ←→r1 ,←→r2 , . . . ,←→rn where ←→ri reverses the prefix of length i.
The brgc(n) can be looplessly generated using RulerGrayCode or RulerGrayCode±.
When generating plain(n) with RulerGrayCode± we maintain the inverse of the
current permutation in order to swap a specific value left or right in O(1)-time.
Maintaining the inverse is also required to looplessly generate our new order.

7 Surprisingly, this sequence is not yet in the Online Encyclopedia of Integer Sequences,
nor is the signed downstairs sequence ruler±(n,n−1,...,2) = ruler±(n,n−1,...,1)−1 =
1, 2, −1, 2, 1, 3, −1, −2, 1, −2, −1, 3, 1, 2, −1, 2, 1, 3, −1, −2, 1, −2, −1, 4, . . ..
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Algorithm 2. Generating Gray codes using ruler sequences with bases b. The
fns modify object s and are indexed by the sequence. For example, if b = 3, 2
then RulerGrayCode±(b) visits ruler ± (2, 3) = 1, 1, 2,−1,−1 alongside a Gray
code that starts s and applies fns with indices 1, 1, 2,−1,−1. The signed version
also generates the reflected mixed-radix Gray code mix(b) in a, with the d values
providing ±1 directions of change. So in the previous example the mixed-radix
words 00, 10, 20, 21, 11, 10 are generated in a. Focus pointers are stored in f . The
overall algorithm is loopless if each function runs in worst-case O(1)-time. Note
that the indexing is reversed with respect to Sect. 4 with b = b1, b2, . . . , bn.
Unary bases should be omitted: bi ≥ 2 is required for 0 ≤ i < n.
1: procedure RulerGrayCode(b, s, fns)
2: a1 a2 · · · an ← 0 0 · · · 0
3: f1 f2 · · · fn+1 ← 1 2 · · · n+1
4:
5: visit(s)
6: while f1 ≤ n do
7: j ← f1
8: f1 ← 1
9: aj ← aj + 1

10: s ← fns[j](s)
11: visit(j, s)
12: if aj = bj − 1 then
13: aj ← 0
14: fj ← fj+1

15: fj+1 ← j + 1

1: procedure RulerGrayCode±(b, s, fns)
2: a1 a2 · · · an ← 0 0 · · · 0
3: f1 f2 · · · fn+1 ← 1 2 · · · n+1
4: d1 d2 · · · dn ← 1 1 · · · 1
5: visit(s)
6: while f1 ≤ n do
7: j ← f1
8: f1 ← 1
9: aj ← aj + dj

10: s ← fns[dj · j](s)
11: visit(dj · j, s)
12: if aj ∈ {0, bj − 1} then
13: dj ← −dj

14: fj ← fj+1

15: fj+1 ← j + 1

Theorem 2. Twisted plain changes twisted(n) and its change sequence are gen-
erated looplessly by RulerGrayCode±(b, s, fns) with twisted bases b, the positive
identity permutation s ∈ S±

n , and the change functions fns given in Lemma 3.

6 Final Remarks

Alternate Gray codes for signed permutations can be generated using other
signed ruler sequences, and some of these generalize to colored permuta-
tions [25]. For additional new results involving greedy Gray codes see Merino
and Mütze [20].

Open question: Does S±
n have a doubly-adjacent Gray code [2] using twists?

We thank the reviewers for their helpful comments, proofreading, and debugging.
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A Python Implementation

A loopless implementation of our signed plain change order twisted(n) in Python 3.
Entries in the twisted ruler sequence ruler±(n, n−1, . . . , 2, 1, 2, 2, . . . , 2) select the
2-twist or 1-twist (i.e., flip) to apply8. Programs are available online [37].

Flip sign of value v in signed permutation p with unsigned inverse q

def flip(p, q, v): # with 1-based indexing, ie p[0] and q[0] are ignored.

p[q[v]] = -p[q[v]]

return p, q

# 2-twists value v to the left / right using delta = -1 / delta = 1

def twist(p, q, v, delta): # with 1-based indexing into both p and q.

pos = q[abs(v)] # Use inverse to get the position of value v.

u = p[pos+delta] # Get value to the left or right of value v.

p[pos], p[pos+delta] = -p[pos+delta], -p[pos] # Twist u and v.

q[abs(v)], q[abs(u)] = pos+delta, pos # Update unsigned inverse.

return p, q # Return signed permutation and its unsigned inverse.

# Generate each signed permutation in worst-case O(1)-time.

def twisted(n):

m = 2*n-1 # The mixed-radix bases are n, n-1, ..., 2, 1, 2,..., 2

bases = tuple(range(n,1,-1)) + (2,) * n # but the 1 is omitted.

word = [0] * m # The mixed-radix word is initially 0^m.

dirs = [1] * m # Direction of change for digits in word.

focus = list(range(m+1)) # Focus pointers select digits to change.

flips = [lambda p,q,v=v: flip(p,q,v) for v in range(n,0,-1)]

twistsL = [lambda p,q,v=v: twist(p,q,v,-1) for v in range(n,1,-1)]

twistsR = [lambda p,q,v=v: twist(p,q,v, 1) for v in range(n,1,-1)]

fns = [None] + twistsL + flips + flips[-1::-1] + twistsR[-1::-1]

p = [None] + list(range(1,n+1)) # To use 1-based indexing we set

q = [None] + list(range(1,n+1)) # and ignore p[0] = q[0] = None.

yield p[1:] # Pause the function and return signed permutation p.

while focus[0] < m: # Continue if the digit to change is in word.

index = focus[0] # The index of the digit to change in word.

focus[0] = 0 # Reset the first focus pointer.

word[index] += dirs[index] # Adjust the digit using its direction.

change = dirs[index] * (index+1) # Note: change can be negative.

if word[index] == 0 or word[index] == bases[index]-1: # If the

focus[index] = focus[index+1] # mixed-radix word’s digit is at

focus[index+1] = index+1 # its min or max value, then update

dirs[index] = -dirs[index] # focus pointers, change direction.

p, q = fns[change](p, q) # Apply twist or flip encoded by change.

yield p[1:]

# Demonstrating the use of our twisted function for n = 4.

for p in twisted(4): print(p) # Print all 2^n n! signed permutations.

8 Negative indices give right-to-left access in Python. So the ruler entry -1 selects the
last function fns[-1] = twist(p,q,n,1) (i.e., 2-twist n right). Notes: v=v is for bind-
ing; slice notation [-1::-1] reverses a list; indices are reversed from Sect. 4.
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